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Summary

A theoretical linear stability analysis is used to consider the effect of a porous wall on the
first Mack mode of a hypersonic boundary layer on a sharp slender cone. The effect of

curvature and of the attached shock are included for axisymmetric and non-axisymmetric

disturbances. The flow in the hypersonic boundary layer is coupled to the flow in the porous
layer by the porous wall model admittance. We considered the effect of the phase angle of

the admittance of a circular pore model on the first Mack mode. We further considered the
effect of two other wall models, a high porosity rectangular mesh microstructure model and

a low porosity model comprising of spanwise grooves with varying thickness, on the linear
and weakly nonlinear stability of the flow.
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1 Introduction

Transition to turbulence in hypersonic flows is associated with amplification of the first
and/or second Mack modes. The first Mack mode is the high speed counterpart of Tollmien–

Schlichting waves, so a viscous instability, with modes located close to the boundary. The

second Mack mode is an inviscid instability. The second Mack mode is believed to be
responsible for transition to turbulence on hypersonic slender bodies. Recent experiments

by Fedorov et al. [1, 2, 3] have shown that a porous coating greatly stabilizes the second mode
of the hypersonic boundary layer on sharp slender cones. The effect of the porous coating

is to reduce the growth rates of the second mode to a level where they are comparable
with those of the first mode (occurring at lower frequencies). In addition, the first mode is

observed to be slightly destabilized by the presence of the porous coating. Thus, the first
mode may now be more significant in the transition process.

We consider the effect of porous walls on the linear instability and weakly nonlinear
stability of hypersonic flow over a sharp slender cone. In this theoretical and asymptotic

investigation for large Mach number and large Reynolds number the scales used will be
appropriate to the first mode instability which is governed by a triple-deck structure. The

effects of curvature and the attached shock will be taken into account. The effect of the
porous wall will change the boundary condition on the normal velocity at the interface.

Our previous studies considered the effect of various porous wall models reported in
literature. The eigenrelations governing the linear stability of the problem was derived.

Neutral and spatial instability results show the presence of multiple unstable modes and
the destabilising effect of the porous wall models on them. The weakly nonlinear stability

analysis carried out allows an equation for the amplitude of disturbances to be derived. The
stabilising or destabilising effect of nonlinearity is found to depend on the cone radius. It

was shown that porous walls significantly influences the effect of nonlinearity.

The effect of the attached shock was shown to be significant [4]. In the absence of a

shock, unstable solutions are possible only for a finite range of cone radii and nonlinearity
stabilises linearly unstable disturbances for all admissible values of the cone radius. The

presence of the shock leads to multiple unstable modes for all values of the cone radius. The

influence of curvature is also important. Curvature was shown to enhance nonlinear effects
[4].

Our previous results [5, 4] show that for sufficiently large cone radius, nonlinear effects
destabilise all linearly unstable viscous modes on a solid cone surface. At small values of the

radius, corresponding to typical lengths of models tested in wind tunnels, it is the unstable
mode with the lowest frequency that is destabilised by nonlinearity. Spatial instability results

demonstrate that these are the fastest growing disturbances but maximum growth rates are
significantly smaller than the second Mack mode. This may explain why in experiments,

transition has been observed due to the second Mack mode on solid cones. In the presence
of porous walls, lower-frequency first Mack modes are also destabilised by nonlinearity while

higher-frequency first Mack modes that are destabilised on the solid wall at a particular
location now become stabilised for a range of local cone radii. This effect is enhanced by

6
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models with higher porosity. Thus over porous surfaces we can expect interaction of first
Mack modes in the low-frequency spectrum to lead to nonlinear amplification of disturbance

amplitudes beyond the critical value.

Recently, parametric studies of porous wall models were reported with the focus on

minimising the destabilising effect on the first Mack mode [6]. These authors have analysed
the porous wall admittance and studied the effect of the admittance phase angle on Mack’s

first mode destabilisation. They investigated the variation of the phase angle of admittance
with pore radius and thickness and show that there is a minimum phase angle indicating

an optimal thickness or pore radius. Numerical simulations using the optimal pore radius

indicate weaker destabilisation of the first mode [6].

In this report we consider the effect of the phase angle of the porous wall admittance
on the linear and nonlinear stability of the flow. We compare our existing results with

those obtained using a theoretical porous coating with purely real admittance. We then

determine the optimum phase angle for minimum first mode destabilisation using actual
regular microstructure porous coatings. We then investigate the effect of porosity on the

nonlinear stability of the flow. Nonlinear stability results using the high porosity mesh
microstructure model are presented. A novel low porosity coating proposed in the literature

[7] is then considered.

2 Methods, Assumptions, and Procedures

2.1 Basic flow

The flow of a compressible, viscous fluid over a sharp cone with a porous boundary, of
semi-angle θc is considered at hypersonic speeds, with magnitude U0 parallel to its axis. We

consider an attached conical shock which makes an angle θs with the cone; a situation which
is illustrated in figure 1. Spherical polars (x, θ, φ) is the natural coordinate system in which

to describe the basic flow, and here φ denotes the azimuthal angle. Furthermore, the radial
distance x has been non-dimensionalised with respect to L∗, the distance from the tip of the

cone to the location under consideration.

The approximate basic flow used is described in [8] so the complete details are omitted.

The important features are summarised below. Away from the surface of the cone the flow
satisfies the (inviscid) Euler equations. The velocities are non-dimensionalised with respect

to U−, where U− is the magnitude of the fluid velocity just behind the shock. Additionally,

the time, pressure and density are non-dimensionalised with respect to L∗/U−, ρ−U2
−

and ρ−

respectively, where ρ− is the density just behind the shock. Finally, the basic temperature

is non-dimensionalised by T−, the temperature just behind the shock.

The inviscid axisymmetric flow between the cone surface and the conical shock depends

only on the polar angle θ. The jump conditions at the shock must be considered and the ve-
locity components may be obtained from a numerical solution of the Taylor-Maccoll equation

[9]. Since, for a hypersonic flow over a slender cone, the density does not vary much, we use
the steady, constant-density solution given by [10], which has the advantage of analytical

7
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Figure 1: The geometry of the cone and shock. The cone is taken to be of semi-angle θc with
the attached conical shock making an angle θs with the surface of the cone.

expressions for the velocity components and pressure. For a slender cone and hypersonic

speeds these approximate solutions agree well with the exact (numerical) solutions.

This solution is not valid close to the surface of the cone so a boundary-layer solu-

tion has to be introduced in this region. The Reynolds number of the flow is defined by
Re = ρ−U−L∗/µ−. Taking the angle of the cone to be small the governing equations in the

boundary-layer region are given in [8] in terms of dimensionless coordinates (x, r, φ) and the
Mach number, M , just behind the shock. Then L∗r is the normal direction to the cone

surface, where r = a on the generator of the cone. The corresponding non-dimensional ve-
locities are (u, v, w) and the non-dimensionalised pressure and density p and ρ, respectively.

The boundary conditions are no-slip at the surface of the cone (coupled to the porous layer)
and appropriate conditions at the shock location. The non-dimensional temperature and

viscosity at the surface of the cone are taken to be Tw and µw, respectively.

2.2 Porous boundary

We will present results corresponding to porous surfaces used in the previous experimental
investigations [2, 11, 12]. In all cases the porous layer admittance Ay can then be expressed

in the form
Ay = −(φ0/Z0) tanh(Λh0), (1)

where φ0 is the porosity and h0 is the non-dimensional thickness of the porous layer. The
porous layer parameters are non-dimensionalised with respect to the boundary-layer dis-

placement thickness δ∗ which is approximated using the Blasius length scale δ∗ =
√

L∗/Re1,
where Re1 is the unit Reynolds number at the outer edge of the boundary layer (just below

the shock). Z0 and Λ are the characteristic impedance and propagation constant of an iso-
lated pore, respectively. Fedorov et al. [3] give the following expressions for the porous layer

characteristics:

Z0 =

√
ρD/CD

M
√

Tw

and Λ =
iωM√

Tw

√
ρDCD, (2)

where ω is the disturbance frequency. These are functions of the complex dynamic density
ρD and complex dynamic compressibility CD. The precise definitions of these quantities

8
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depends on the structure of the porous wall. Following [1, 3] we consider the porous layer
on the cone surface to be a sheet of thickness h∗ perforated with cylindrical blind holes of

radius r∗p and equal spacing s∗ = r∗p
√

π/φ0. This model takes into account gas rarefaction
effects. We have

ρD =
1

1 − F (Bν , ζ)
, CD = 1 + (γ − 1)F (BE , ζ

√
Pr),

F (Bν , ζ) =
G(ζ)

1 − 0.5Bνζ2G(ζ)
, F (BE, ζ

√
Pr) =

G(ζ
√

Pr)

1 − 0.5BE(ζ
√

Pr)2G(ζ
√

Pr)
,





(3)

where

Bν = (2α−1
ν − 1)Kn, BE = [γ(2α−1

E − 1)/(γ + 1)Pr]Kn, G(ζ) =
2J1(ζ)

ζJ0(ζ)
, (4)

where ζ = rp

√
iωρwR/µw and γ is the specific heat ratio of air. Here J0,1 are Bessel functions

of the first kind, αν and αE are molecular accommodation coefficients, Kn is the Knudsen

number, Pr is the Prandtl number and R is the Reynolds number based on boundary-layer
displacement thickness of the gas flow.

Following [12] we can also consider the porous coating on the cone surface to comprise
of several layers of stainless steel wire mesh as shown in Figure 3 of their paper. A similar

model to the one described above for a regular microstructure is employed. Following [13]
we have different expressions for the complex dynamic density and compressibility. We

then obtain the following expressions for the porous layer characteristics for a square mesh
microstructure:

ρD = 1/(1 − F (ζ)), CD = 1 + (γ − 1)F (ζ̃),

F (ζ) = 1 + ζ2
∞∑

m=0

[
2

γ2
mβ2

m

(
1 − tanh(βm)

βm

)]
,

F (ζ̃) = 1 + ζ̃2
∞∑

m=0

[
2

γ2
mβ̃m

2

(
1 − tanh(β̃m)

β̃m

)]
,





(5)

where

γm = π(m +
1

2
), βm =

√
(γ2

m − ζ2), β̃m =

√
(γ2

m − ζ̃2). (6)

The characteristic size of an isolated pore is given by

ζ =

√
iωρwã2

µw

R, and ζ̃ =
√

Prζ. (7)

In the subsequent stability calculations we take

M− = 5.3, T ∗

−
= 56.4K, Pr = 0.708,

Re1 = 15.2 × 106, Re = Re1L
∗, R =

√
Re,

9
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Tw = Tad, Tad = 1 +
√

Pr
γ − 1

2
M2

−
,

ρw =
1

Tw
, µw(Tw) =

1 + S

Tw + S
T 3/2

w , S =
110

T ∗

−

.

Following [1] we consider h0 ≫ rp. The last relation implies that Λh0 → ∞, and so our

admittance equation (1) may be simplified to

Ay = −φ0/Z0. (8)

The wall boundary condition is given by

v = Ay (p − p−) , (9)

where p− = γ−1M−2.

3 Linear stability problem

The linear stability of the basic flow described in § 2.1 for M ≫ 1 and Re ≫ 1 is investigated

in the weak-interaction region following a triple-deck formulation used by [14] and [15]. The
conditions to be satisfied at the shock by a disturbance to this basic flow must be specified

and these have been derived in detail in [16]. The requisite constraints were obtained by
considering the linearised jump conditions at the shock for infinitesimal waves beneath the

shock; a similar procedure was adopted by [14] for flow over a wedge. Although the basic flow

is not uniform in the regions below and above the shock, [16] showed that the jump conditions
may still be evaluated at the undisturbed position of the shock. The condition satisfied by

the pressure amplitudes of the two acoustic waves (which are incident and reflected from the
shock) is found to be similar to that for a wedge obtained by [14].

Attention is focused at a location on the surface of the cone with non-dimensional radius
a = a∗/L∗. It is assumed that aRe

3

8 M
1

4 µ
−

3

8

w T
−

9

8

w = a ∼ O(1) denotes the scale of the radius

at this point; thus we have chosen sin θc ∼ θc ∼ Re−
3

8 M−
1

4 µ
3

8

wT
9

8

w .

Our study is confined to the question of the stability of the flow at a location on the

body where the boundary-layer thickness is O(Re−
1

2 L∗), which is thin compared to the local
radius of the cone. This situation is chosen so that curvature effects are significant. The

analysis is somewhat simplified if non-parallel effects can be neglected and [14] showed that
this is justifiable if the ‘Newtonian’ assumption γ − 1 ≪ 1 is made. Thus, for simplicity,

this condition is taken to hold in the following analysis although it can be easily relaxed for

more involved studies.

It is convenient to scale out some of the parameters in the problem, namely µw, Tw and

λ, where the last quantity denotes the boundary-layer skin friction. For axisymmetric flow
the Mach number may be scaled out of the linear stability problem.

We consider perturbations proportional to

E = exp [i (αX + nφ − Ωτ)] ,

10
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where α and n are the streamwise and azimuthal wavenumbers respectively and Ω is the
frequency of the disturbance. Note that n is an integer.

Previous scaling, following [14] and [17], is applied to the resulting equations for axisym-
metric disturbances (corresponding to n = 0). Analytic solutions of these equations yields

an eigenrelation relating the streamwise wavenumber α and frequency Ω, namely

Ai′(ξ0)∫
∞

ξ0
Ai(ξ)dξ

= −(iα)1/3
(
AY + iα

) I0(iαrs)K0(iαa) − I0(iαa)K0(iαrs)

I0(iαrs)K1(iαa) + I1(iαa)K0(iαrs)
. (10)

Here ξ0 = −i1/3Ωα−2/3, Ai(ξ) is the Airy function, Kn(z) and In(z) are the usual modified

Bessel functions, and Ay = Re−1/8µ
1/8
w λ1/4T

3/8
w (M2 − 1)3/8AY . The admittance, Ay, is a

function of the disturbance frequency and depends on the physical properties of the flow
and the porous layer. The angular frequency of disturbance propagation through the pore

is ω = (R/Re)Re1/4µ
−1/4
w λ3/2T

−3/4
w (M2 − 1)1/4Ω. The parameter rs is the scaled non-

dimensional location of the shock. The values of a and rs depend on the physical parameters

for the flow. The relationship between rs and a is discussed in [4] and [5]. The cone angle
and Mach number will determine the shock angle θs and the scaled radius a. Then the scaled

shock location rs is determined using

a

rs
≈ sin θc

tan θs + sin θc
. (11)

For a free stream Mach number M∞ = 6 flowing over a cone of half-angle θc = 60, the above

formula gives a/rs = 0.57. All our stability results are presented using this ratio.

The stability analysis for non-axisymmetric disturbances with azimuthal wavenumber n

is carried out in a similar manner to that just described for axisymmetric disturbances. The
scaling is different and in particular

Ay = Re−1/8µ1/8
w λ1/4T 3/8

w M5/4AY

and
ω = (R/Re)Re1/4µ−1/4

w λ3/2T−3/4
w M−1/2Ω.

The resulting eigenrelation for non-axisymmetric disturbances is given by

Ai′(ξ0)∫
∞

ξ0
Ai(ξ)dξ

= (iα)1/3

[
AY +

in2

αa2

]
In(iαrs)Kn(iαa) − In(iαa)Kn(iαrs)

In(iαrs)K ′

n(iαa) − I ′

n(iαa)Kn(iαrs)
. (12)

4 Nonlinear stability problem

The linear stability analysis will not be valid for larger disturbances. Thus, it is important

to determine the effect of nonlinearity on the stability of hypersonic boundary layer flow
over a sharp slender cone with a porous wall. We consider a weakly nonlinear disturbance

which develops in the vicinity of a linear neutral point (real α and Ω for fixed n > 0). If the
relative amplitude of the disturbance in the lower deck of the triple-deck structure is O(h),

11
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h ≪ 1, then the scaled amplitude A of the mode will evolve on an O(h2) lengthscale. Thus,
we consider perturbations at the point

x = 1 + h2x2.

Since the skin friction λ is a function of x we define it as λ(x) = λ1 + . . . and slightly perturb

it as follows.
λ = λ1 + h2λ2,

where λ2 = x2dλ/dx|x=1. Additionally, we choose to fix the azimuthal wavenumber and
write

Ω = Ω1 + h2Ω2,

where Ω1 is the neutral value of Ω. To account for the slow modulation of the amplitude on
streamwise lengthscales we introduce the coordinate

X̃ = h2X,

and then by use of multiple scales we replace all X derivatives throughout according to

∂

∂X
→ ∂

∂X
+ h2 ∂

∂X̃
.

Now for h ≪ 1 we proceed to seek solutions of the lower-deck equations ((8) and (9) in the
second report) and the upper-deck problem ((11) in the second report) where

(
U −

(
1 + h2λ2

)
Y, V, W, P, A, p̃

)
=

3∑

j=1

hj (Uj , Vj, Wj, Pj, Aj, p̃j) + O(h4). (13)

Substitution of (13) into the disturbance equations leads to a hierarchy of problems at
increasing orders in h.

The solution for the O(h) terms in (13) has been obtained from the linear stability
analysis reported previously, resulting in the dispersion relations (10) and (12). The solution

for A1 has the form
A1 = A11E + A

(c)
11 E−1,

where the superscript (c) denotes complex conjugate. At O(h2) we find the solution for A2

takes the form

A2 = A22E
2 + A20 + A

(c)
22 E−2,

with similar expansions for U2, V2, W2, P2 and p̃2. The analysis follows that for the solid wall
problem (see [18]) but the boundary condition at the porous wall leads to additional terms

in the solutions. Solving the equations and satisfying all the boundary conditions leads to
an expression relating the amplitude at O(h2) to the square of the amplitude at O(h).

At O(h3) the amplitude equation for the unknown function A11(X̃) is determined. This
equation arises from a solvability condition on the O(h3E) terms. We seek solutions of the

form
p̃3 = p̃31E + p̃32E

2 + p̃33E
3 + p̃

(c)
31 E−1 + p̃

(c)
32 E−2 + p̃

(c)
33 E−3 + p̃30.
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The solution in the lower deck involves an inhomogeneous differential equation of which
a solution only exists if a certain compatibility condition holds. This condition is derived

by considering the adjoint system of the problem as in [19]. Specifically, we multiply the
inhomogeneous equation by the adjoint function and integrate over the range [ξ0,∞].

By matching the solution for p̃31 with the solution for the disturbance pressure in the
main deck we obtain the evolution equation for A11 in the form

a1
dA11

dX̃
= (a2λ2 + a3Ω2) A11 + a4A11|A11|2 . (14)

The complex constants in (14) are defined in [4]. The coefficients are functions of the

neutral results and so depend on the porous wall properties. The porous wall has introduced
additional terms in the coefficients. Thus, their evaluation requires substantial numerical

calculations.

The corresponding nonlinear stability problem for axisymmetric disturbances must be

considered separately since the Mach number can be scaled out of the weakly nonlinear
problem. The analysis is very similar to that for the non-axisymmetric problem and the

resulting amplitude equation is presented in [4].

5 Results

5.1 Phase angle of admittance

We want to investigate the effect of the phase angle of the porous wall admittance Ay on

the linear and nonlinear stability problem. We perform our stability calculations using an
“artificial” porous coating with zero imaginary part of the admittance (phase angle = π).

We call this quantity Ar
y.

Figure 2 shows the neutral solutions for Ω for a/rs = 0.57 and n = 1 using a regular

microstructure model with admittance Ay and admittance Ar
y. The flow is unstable above

the neutral curves. We see that having a porous coating with phase angle π leads to lower

neutral curves for the higher modes. So there is a destabilising effect in the sense that low

frequencies may become unstable. Corresponding results for n = 2 is shown in figure 3. We
see that the effect of the phase angle is small for these disturbances. We can look at the

effect on axisymmetric disturbances in figure 4. We see that there is very little effect of the
phase angle on the neutral modes.

We can now examine the effect of the phase angle on the spatial growth rates. We
begin with figure 5 which shows the variation of the spatial growth rates with Ω for n = 1

for different values of a. We see that a phase angle of π leads to slight reduction of the
maximum growth rates for all values of a. Corresponding results for n = 2 are shown in

figure 6 where we observe similar trends. Finally we look at the effect of phase angle on
the axisymmetric problem in figure 7. Here we see that a phase angle of π leads to a slight

increase in maximum growth rates at larger values of a.
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radius a for a regular microstructure model with admittance Ay and admittance Ar

y.

We now examine the effect of the phase angle on the nonlinear stability problem. We
begin with figure 8 which shows Re(a4/a1) for n = 1 and a/rs = 0.57. We note that if

Re(a4/a1) > 0, the nonlinear effects are destabilising. We see that a phase angle of π leads
to a greater destabilising effect of nonlinearity. This can be seen by noting that Re(a4/a1) > 0

for smaller values of a for each mode. Corresponding results for n = 2 are shown in figure
9 where we notice a similar trend. Finally we look at the effect of phase angle on the

axisymmetric problem in figure 10 and notice a similar effect to the non-axisymmetric case.
We see that the effect of phase angle is more significant particularly for the first mode.

In the above calculations we considered a regular infinitely thick “artifical” coating with
an admittance with zero imaginary part. We found that the effect of phase angle has a

more significant effect on the nonlinear stability of both axisymmetric and non-axisymmetric
disturbances. For “actual” porous coatings we examine the variation of the phase angle

with pore radius r∗p. Here we fix the porosity and assume that the thickness h∗ ≫ r∗p.
Let us consider the porous wall model equations (2-8) with Kn = 0. For small values of

pore radius rp we will assume that |ζ | ≪ 1. Then by using the appropriate small argument
asymptotic expansions of the Bessel functions J0 ∼ 1/2ζ and J1 ∼ 1−ζ2/4 we can show that

G(ζ) ∼ 1+ζ2/4. Thus we can approximate ρD ∼ −4/ζ2+ . . . and CD ∼ γ+ . . .. We can then
show that Ay ∼ iζ = |Ay|ei3π/4. Let us now consider equations (2-8) for large values of pore

radius rp such that we can assume |ζ | ≫ 1. Now the large argument asymptotic expansions

of the Bessel functions are J0 ∼
(
1/
√

πζ
)
(cos ζ + sin ζ) and J1 ∼

(
−1/

√
πζ

)
(cos ζ + sin ζ)

leading to G(ζ) ∼ −2/ζ . Using these results we can approximate ρD ∼ 1 − 2/ζ + . . . and

CD ∼ 1 − 2(γ − 1)/ζ + . . .. We can then show that Ay ∼ ζ2 = |Ay|eiπ.
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These theoretical findings are supported by figure 11 which shows the variation of the
phase angle with pore radius rp for three different values of frequency Ω. We can see that for

small values of rp the phase angle tends to 3π/4 for all values of the frequency. As the pore
radius increases we see that the phase angle tends towards π particularly for higher values

of frequency (which makes |ζ | larger).

The effect of pore radius on the linear stability of first mode disturbances can be seen in

figure 12. We see that increasing the pore radius from 30µm to 90µm leads to a decrease in
the cut-off value Ωc at which the growth rate parameter αi becomes negative. This effect is

more pronounced at smaller values of cone radius a. This means that lower frequencies may

become unstable. We can also see that increasing the pore radius also leads to a substantial
increase in the maximum growth rates of these linearly unstable disturbances.

We can thus conclude that to avoid deleterious effect of the porous coating on the desta-

bilisation and subsequent nonlinear amplification of first Mack mode disturbances we need

to minimize the pore radius so that the phase angle of admittance remains close to 3π/4.
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5.2 Effect of porosity and other porous models

In Report 6 of Grant no. FA8655-08-1-3044 the effect of random microstructure porous mod-
els on the stability of the first mode was considered. The felt metal significantly destabilises

the neutral modes and strongly amplifies the linearly unstable modes with the higher modes
giving the largest growth rates [5]. Nonlinear effects in the presence of the felt metal coating

stabilise these more dangerous higher modes over a larger range of a while destabilising the
more slowly growing lower modes [4]. Since the felt metal coatings have higher porosity

compared to typical regular microstructure models, to corroborate these findings, nonlinear
stability results for the regular porous model with a higher porosity of φ0 = π

4
was obtained.

In figures 13a and 13b for n = 0 and n = 1, respectively, we see that higher porosity
leads to nonlinearity having a stabilizing effect on mode numbers greater than one. This can

be seen by noting the increase in the value of a where Re(a4/a1) becomes positive. However,
for large values of a the destabilising effect of nonlinearity is stronger with Re(a4/a1) being

slightly larger for higher porosity. In figure 14a for n = 2 we see the stabilising effect of
higher porosity for mode numbers greater than two and in figure 14b for n = 3 we see it

for mode numbers greater than three. We may thus conclude that porous coatings with
higher porosity allows nonlinear effects to stabilise higher mode number disturbances at a

particular location with the mode number of the lowest mode that is stabilised increasing

with increasing azimuthal wavenumber.

In Report 6 of Grant no. FA8655-08-1-3044 we also considered the mesh microstructure

model which has a high porosity of 0.8. Results from the linear stability analysis was
presented. It was shown that the higher porosity of the mesh microstructure only leads to

a slightly greater destabilisation of both axisymmetric and non-axisymmetric disturbances
when compared to the regular porous model. We now present here the results from the

nonlinear stability analysis using the mesh microstructure model and compare it with the
regular microstructure model. Figure 15 shows Re(a4/a1) for n = 1 for both the models. The

effect of the two models on the first mode is similar. For the higher modes nonlinear effects
are slightly more destabilising for the regular model compared to the mesh model. This

can again be seen by noting that Re(a4/a1) becomes positive at smaller values of a for the
regular model compared to the mesh model. Thus the mesh microstructure model provides

better performance when compared to both regular and random microstructure coating.

Parametric studies also show that high porosity provides maximum second-mode stabil-

isation [1]. However numerical studies of Bres et al. [7] reveal that porous coatings with too
closely spaced pores trigger a new shorter wavelength instability whose growth rate can be

larger than that of Mack’s second mode. The authors have attempted to optimize the design
of porous coatings based on the acoustic scattering properties of the porous layer. They pro-

pose a porous coating with fixed low porosity comprising of spanwise grooves. Each porous
cavity has a depth H , half-width b and spacing s, all of which vary along the longitudinal

length of the cone. Following [13] the regular porous model of (3) can be used to study this
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Figure 13: Re(a4/a1) as a function of local cone radius a for a/rs = 0.57 and (a) n = 0; (b)
n = 1. Results are shown using the regular microstructure model (3): —, φ0 = π/4; −−−,
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Figure 15: Re(a4/a1) for the first five modes as a function of local cone radius a for n = 1
and a/rs = 0.57: —, mesh microstructure model (5); − − −, regular microstructure model
(3).

model by making the following changes:

ζ = b

√
iωρw

µw
R, F (B, ζ) =

tan ζ

ζ [1 − Bζ tan ζ ]
. (15)

The effect of this new design on the first mode instability is examined. In figure 16

maximum unstable growth rates of the first azimuthal mode n = 1 are compared using this
porous model and the regular porous model both with porosity φ0 = 0.2. The regular porous

model is assumed to be infinitely thick and the pore radius is fixed at 25µm. From figure
16 we see that at smaller streamwise distance the new design leads to lower amplification

of unstable disturbances and with increasing streamwise distance the difference between the
growth rates of the two models becomes very small. This novel design corresponds to porous

coatings with low porosity and large cavity aspect ratio (2b/H) i.e., thinner coatings with
less pores. These type of coatings are easier to manufacture and incorporate into thermal

protection systems in hypersonic vehicles [7].

The effect of nonlinearity in the presence of this coating is shown in figure 17. Here

we can see Re(a4/a1) against streamwise distance L∗ for the spanwise groove model with
variable thickness and the regular porous model with infinite thickness. We see that in the

presence of the novel porous coating model, nonlinearity has a stabilising effect on all the
modes.
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6 Conclusions

In this report we considered the effect of the phase angle of admittance of an infinitely thick
regular microstructure porous coating on the linear and weakly nonlinear stability of the first

Mack mode. We show that the phase angle significantly affects the nonlinear stability for

both axisymmetric and non-axisymmetric disturbances. Our results show that the optimum
phase angle of admittance is 3π/4, and this can be achieved by having the pore radius as

small as possible.

We then considered the effect of porosity on the stability of the flow. Previous results us-

ing random microstructure models and results shown here using regular and mesh microstruc-
ture model show that porous coatings with high porosity allow nonlinear effects to stabilise

the most linearly unstable modes. These are the higher mode number/frequency modes.
However higher porosity can have a detrimental effect on the lower mode number/frequency

modes as they are destabilised by nonlinear effects causing a subcritical instability. A novel
porous coating with low porosity comprising of spanwise grooves was proposed in [7]. Our

results indicate that this type of coating provides optimum performance with regards to both
linear and nonlinear stability of first mode disturbances.
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7 List of Symbols, Abbreviations, and Acronyms

a = cone radius
ã = half-pore width
b = pore groove width
A = displacement function
Ay = admittance

AY = scaled admittance
CD = C∗

Dγp−, dynamic compressibility
d∗ = fibre diameter
h0 = porous-layer thickness
H = porous-layer thickness
L∗ = length scale
Kn = Knudsen number
M = Mach number
n = azimuthal wavenumber
Pr = Prandtl number
P = pressure disturbance
R = U−δ∗/ν−, Reynolds number
Re = Reynolds number
rp = pore radius
rs = shock location
T = temperature
u, v = velocity disturbance
x, r, φ = orthogonal coordinates
Z0 = characteristic impedance
α = streamwise wavenumber
γ = specific heat ratio
δ∗ = boundary-layer displacement thickness
θc = cone angle
θs = shock angle
Λ = propagation constant
Ω = frequency
µ = viscosity
ν = kinematic viscosity
ρ = density
ρD = ρ∗

D/ρ∗

W , dynamic density
φ0 = porosity
σ∗ = flow resistivity
ω = angular frequency
λ = skin friction
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Subscripts

− = just behind the shock
s = shock
w = wall
i = imaginary part

Superscripts

∗ = dimensional term
r = real quantity
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